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A site percolation approach to classical transport in disordered two-phase 
materials is presented. A Monte Carlo computer experiment gives the 
bulk conductivity of a 30 • 30 • 30 site simple cubic resistor network 
consisting of two kinds of unit resistor with different conductance. A 
modified effective-medium theory predicts vcry accurately the bulk conduc- 
tivity of the network. This theory is found to agree well with available data 
for the thermal conductivity of real two-phase materials: glass particle- 
silicon rubber; glass fiber-plastics; air-saturated porous sandstone; and 
air-saturated fire brick. 
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1. I N T R O D U C T I O N  

The physical properties of a two-phase material  are dependent  on the phase 
geometry of  the material  as well as on the properties of each phase. I t  has 
been argued by several authors  (1,2~ that  electronic conduct ion  in disordered 
materials can be related to solutions of the classical percolation problem. 
Also, electrical conduct ion  in resistor networks has been studied as a para- 
digm of  classical t ranspor t  in disordered materialsJ  3,4) Much significant 
work has been done in this area. (5,6~ A m o n g  many  other advances, Kirk-  
patr ick has conducted many  Monte  Carlo experiments on the bulk  conduc- 
tivity of  resistor networks and developed a detailed theory. ~a,~) Recently, 
site percolation theory has been used for a theoretical model  of fluid through 
porous media. ~7~ 

There is, however, no site percolat ion approach to the thermal  conduc- 
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tivity of a disordered two-phase material in which one phase is much more 
conductive than the other. In this paper, we have evaluated numerically the 
bulk conductivity of a simple cubic resistor network which is derived from a 
site percolation model of two-phase materials. Our site percolation model 
has the advantage that the probability assigned to each phase is equivalent 
to the volume fraction of each phase in a real composite material. Moreover, 
we have developed a new theory to predict the bulk conductivity of the ran- 
dom resistor network, using the effective-medium theory. 

This study originated from the problem of heat conduction in macro- 
scopically homogeneous and isotropic two-phase soils (such as air-saturated 
or water-saturated soils). To understand the thermal properties of soils is 
one of the fundamental problems encountered in agricultural engineering 
projects, and can lead to the accurate prediction of the temperature gradient 
in farm soils. 

In Section 2 we describe a site percolation model of two-phase materials. 
The model is converted into a simple cubic resistor network composed of 
two kinds of unit resistor with different conductance. Next, we present new 
Monte Carlo results on the bulk conductivity of the random resistor network 
with 30 x 30 x 30 sites. The results clearly indicate that the bulk conduc- 
tivity of the random resistor network is statistically a stable property. In 
Section 3, we propose a modified effective-medium theory, which gives a 
surprisingly accurate prediction of the Monte Carlo data for our site percola- 
tion network. This theory is derived from the fact that our site percolation 
system is a special case of a correlated bond system composed of three types 
of bond, and that the single-bond effective-medium theory (3,~) can be applied, 
by statistical reasoning, to this correlated bond system. In Section 4, we show 
that the theory can accurately predict the effective thermal conductivity of 
real two-phase materials. The theory is compared with recent experimental 
results on the following mixtures: glass particle-silicon rubber; glass fiber- 
plastic; air-saturated porous sandstone; and air-saturated fire brick. We feel 
that the present site percolation approach is very promising for the study of 
classical transport in disordered materials. 

2. R A N D O M  M O D E L  A N D  SIMPLE 
CUBIC RESISTOR N E T W O R K  

A random model of two-phase materials, (7) in which two kinds of unit 
cube of equal size are present at random, is shown in Fig. 1. The black cubes 
represent the first phase and the white cubes the second phase. If  the two 
kinds of unit cube are piled at random into an N • N • N cube and n is a 
total number of black cubes contained in it, the volume fraction p of the 
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Fig. 1. Model of a two-phase material. 
Black (first phase) and white (second 
phase) unit cubes are piled at random 
into an N x N x N cube. 

first phase is defined by p = n/N 3, where 0 ~< p ~< 1. Note that the volume 
fraction p is interpreted as the probability p that one will find a black cube 
at an arbitrary site in the model. ~ 

Suppose that the black cubes in this model are replaced with special 
unit resistors having the conductance of  the first phase and the white cubes 
are replaced with those having the conductance of  the second phase; a 
three-dimensional random resistor network illustrated two-dimensionally in 
Fig. 2 is obtained. I f  KI is the conductance of  the first phase and K2 is that 
of  the second phase, the bulk conductivity K(p) of  the network is statistically 
determined with K1, Kz, and p. 

We have evaluated numerically the bulk conductivity of the network. 
Consider that the network is sandwiched between two plane electrodes made 
of  perfect conductors connected with a unit voltage source. Then the voltages 
at the nodes of  each network, and from them the total current flow for the 
fixed external applied voltages, are obtained by a successive overrelaxation 
procedure based upon the Kirchhoff current taw. (3,4,7~ The positive initial 
values fitted to the applied voltage gradient are assigned to the nodes of  the 
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unit resistor with K~ 

unit resistor with K2 

Fig. 2. Section of a three-dimensional site percolation network composed of special 
unit resistors. 
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network. I f  K~j is the conductance of the link between adjacent nodes i and j, 
the voltage V~ of node i, after the (k + 1)th iteration, is given by 

= V, k + [~j___K, jVj* V k) (1) v,~§ o~ ~jK, j 
where ~o is the variable acceleration parameter  of  the overrelaxation procedure 
and 0 < ~o < 2, and Vp is the voltage o f n o d e j  after the (k + 1)th iteration 
or kth iteration. The solution for a network of 30 • 30 • 30 sites was 
obtained with a gradually varied value of co starting from 1.6 and ending 
with 1.9. This operation with the parameter  ~o is genuinely an empirical 
procedure which has been found effective in this type of calculation. (~ I t  
required from 28 to 55 iterations. 

In Fig. 3, the values of  the conductivity K(p) of the 30 • 30 • 30 site 
network are plotted against the volume fraction p of  the first phase, where 
K(p) is normalized so that K(1) = 1. For each set of  points, K1 = 1 and K2, 
taken to be less than K1, is indicated. In the extreme case ofKz = 0, the values 
of  K(p) have already been reported (data points .4 in Fig. 3). (*'7) In the trivial 
case where K~ = Ks, K(p) is equal to unity (horizontal line B in Fig. 3). 
The solid lines are the predictions of  the modified effective-medium theory in 
Section 3. 

The numerical results for the conductivity K(p) are presented in Table I. 
For each value of  p, one or two Monte Carlo samples of  the model are calcu- 
lated. The value of K1 is 1, and the value of Kz described in the table is taken 
to be less than K~. Each value of K(p) is the average of interlayer currents 
calculated at the end of the iteration process. The errors given in the table 
are the maximum limits estimated from half of  the difference between the 
minimum and the maximum of  the interlayer currents. The exact value of  
K(1) is 1 and that of  K(0) is K2/KI (footnote b in Table I). 
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0 0.2 0.4 0.6 0.8 1.0 
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Fig. 3. Conductivity K(p) of a simple cubic 
network with 30 x 30 x 30 sites versus 
volume fraction p of the first phase, Calcula- 
tions for the network (data points) and pre- 
dictions of the modified effective-medium 
theory described in Section 3 (solid lines) are 
displayed for six values of K2 as labeled. Data 
points A (critical region) indicate the results 
of the computer simulation of Onizuka (7) for 
simple cubic networks with 50 x 50 x 50 
sites. Squares: exact value; half-shaded 
circles: two overlapping points. 
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Table I. Calculation of  the Bulk Conductivity K(p) for a Network  w i t h  30 • 
30 x 30 Sites ~ 

Bulk conductivity K(p) 

K2 = 0.9 K2 = 0.7 K2 = 0.5 Ka = 0.3 K~ = 0.1 

p MC1 MC2 MC1 MC2 MC I  MC2 MC1 MC2 MC1 MC2 

0.0 0.9 a - -  0.7 b - -  0.5 b - -  0,3 b - -  0.1 ~ - -  
0.1 0.909 - -  0.724 - -  0.533 - -  0.332 0,332 0.1t8 0.117 
0.2 0.919 0.919 0.750 0.749 0.569 0.569 0.371 0.372 0.145 - -  
0.3 0.928 - -  0.778 - -  0.608 - -  0.419 0.419 0.182 0.180 
0.4 0.938 0.938 0.806 0.804 0.652 0.652 0.472 0.472 0.233 - -  
0.5 0.948 - -  0.835 - -  0.697 - -  0.536 0.535 0.305 0.315 
0.6 0.958 0,958 0.866 0.864 0.749 0.750 ~ 0.609 0.607 0.395 - -  
0.7 0.969 - -  0.896 - -  0.804 0.808 c 0.693 0.689 0.515 0.512 
0.8 0.979 0.979 0.930 0.929 0.865 0.868 c 0.783 0.784 0.657 - -  
0.9 0.989 - -  0.964 - -  0.931 0.931 a 0.888 0.887 0.811 0.8t8 c 
1.0 1.0 b - -  1.0 ~ - -  1.0" - -  1.0 b - -  1.& - -  

i ,  i i ,  ill i 

Values of the conductances are K1 = 1 (with probabili ty p)  and K2 < 1 (with proba-  
bility 1 - p). Numerical values of the network conductivity for each value of  p are 
obtained from one or two Monte  Carlo (MC) samples. Except where otherwise 
indicated, the error  is +0.001. 

b Exact value. 
Error  is +0.002. 

* Error  is _+ 0.003. 

N o t e  t h a t  e a c h  p a i r  o f  p o i n t s  o b t a i n e d  f r o m  t w o  d i f f e r en t  M o n t e  C a r l o  

s a m p l e s  f o r  a g i v e n  v a l u e  o f p  a l m o s t  o v e r l a p  in  Fig .  3. T h i s  imp l i e s  t h a t  t h e  

b u l k  c o n d u c t i v i t y  o f  t h e  r a n d o m  r e s i s t o r  n e t w o r k  is s t a t i s t i ca l ly  a s t a b l e  

p r o p e r t y .  

3.  M O D I F I E D  E F F E C T I V E - M E D I U M  T H E O R Y  

T h e  e f f e c t i v e - m e d i u m  t h e o r y  b a s e d  u p o n  t h e  s e l f - c o n s i s t e n t  l oca l  f ie ld 

c o n c e p t  h a s  b e e n  a p p l i e d  in  p r e d i c t i n g  o t h e r  p h y s i c a l  c o n s t a n t s ,  s u c h  as  

e l ec t r i ca l  a n d  m e c h a n i c a l  p r o p e r t i e s  o f  d i s o r d e r e d  m a t e r i a l s .  (~ T h e  

e s s e n c e  o f  t h i s  m e t h o d  is to  so lve  t h e  f ie ld e q u a t i o n  fo r  a r e p r e s e n t a t i v e  e l e m e n t  

o f  t h e  m a t e r i a l ,  w h i c h  is t a k e n  t o  b e  e m b e d d e d  i n  a n  ef fec t ive  m e d i u m  

w i t h  t h e  u n k n o w n  p h y s i c a l  c o n s t a n t .  T h e  ef fec t ive  c o n s t a n t  is d e t e r m i n e d  

in  t u r n  b y  r e q u i r i n g  t h a t  t h e  effects  o f  t h e  d e v i a t i o n  f r o m  t h e  t r u e  c o n s t a n t  

sha l l ,  o n  t h e  a v e r a g e ,  c a n c e l  ou t .  (16) T h i s  t h e o r y  h a s  b e e n  s t u d i e d  to  t r e a t  

r e s i s t o r  n e t w o r k s ,  a n d  f o u n d  to  b e  a n  a c c u r a t e  a p p r o x i m a t i o n  to  t h e  b o n d  

p e r c o l a t i o n  m o d e l ,  e x c e p t  in  a c r i t i ca l  r e g i o n / 8 ' ~  T h i s  t h e o r y ,  h o w e v e r ,  fa i ls  

t o  p r o v i d e  a q u a n t i t a t i v e  d e s c r i p t i o n  o f  t h e  p r e s e n t  s i te  p e r c o l a t i o n  sy s t em.  
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Here, if we notice that our site percolation system is a special case of a 
correlated bond system composed of three types of bond, having con- 
ductance K1,/ :3[= 2KIK2/(K~ + K2)], and /(2, and occurring with the 
probability p2, 2p(1 - p ) ,  and (1 -p )2 ,  respectively, then we can modify 
the effective-medium theory in the following manner. 

Consider the average conductance of a bond around site A in Fig. 4. 
An external electric field is applied along the right-left direction. I f  site A 
represents a K~ site, a / ( i  bond occurs with probability p and a K3 bond with 
probability 1 - p in connecting site A with a neighboring site. The average 
value Km~ of  the bond is given by 

Kin1 = pK~ + (i - p)Ka (2) 

where K3 is the average 2K1K2/(K1 + K2). 
In a similar way, for a K2 site, a K2 bond occurs with probability 1 - p 

and a K8 bond occurs with probability p. The average value Kmz is given by 

Kmz = (1 - p)K2 + pK8 (3) 

In our resistor network, the average values Kin1 and K,~2 obtained above 
occur with probabilities p and 1 - p, respectively. The average effect of  the 
values Kin1 and K~2 can be expressed by giving all of  them a single value 
K~ff and choosing Ke~f such that the effects of changing any one conductance 
back to its true value will, on the average, cancel out. 

If  a bond with conductance K0 is embedded in an infinite medium of 
conductivity Ke•, altering the value of a conductance aligned along the 
electric field from K, ff to Ko causes an additional voltage Vo to be induced 
across Ko,(3) 

1Io = Vef~(geff - -  go)l(go q- 2Kerr) (4) 

where V~ff is the voltage drop between adjacent rows far from Ko. Thus, if 
p(K~) is the probability distribution of the average bond conductance Kin, 

( 

A ( 
) 

Fig. 4. The average conductance  of  a b o n d  
a round  site A. I f  site A is a K1 site, K~I = 
pK1 +(1- -p )Ka .  I f  site A is a K~ site, 
Kin2 = (1 - -  p)K2 + pK3, where K3 = 
2K:~K2/(KI + K2). E denotes  an  externally 
appl ied field. 
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we have, for a cubic network, 

= f dKmp(Km)(Kerf - Km)/(Km + 2Ke,r) 0 (5) 

If  p(Km) is a binary distribution, Eq. (5) becomes a quadratic equation for 
Kerr. Thus, according to the single-bond EMT, ~3,4~ the bulk conductivity 
K,~,~(p) of the resistor network is, with the root, given by 

4Kofr(p) = (3p - 1)Kin + [3(1 - p )  - l]Km2 

+ ({(3p - I)K,~ + [3(i - p )  - 1]Kin2} 2 + 8K~Km2) ~/2 (6) 

The effective conductivity K~rf(p) is plotted as the solid lines in Fig. 3. 
For the extreme case of K2 = 0, the random model of two-phase material 

is a mixture of a conducting material with conductance/s and volume frac- 
tion p and an insulating material with volume fraction 1 - p .  Thus we 
obtain 

0 for p < �89 
K.f f (p)= �89  1) for p > �89 

(7) 

In other words, the concentration po at which the effective conductivity 
K, fr(p) vanishes is 1/3. From numerical results of computer simulations, 
Kirkpatrick (~ and Onizuka (v~ have suggested a power law for the network 
conductivity at K2 = 0; namely, K(p) oc (p - pc) t, where p~ ,~ 0.312-0.318 
and t ~ 1.5-1.73. 

For cases in which/s and K2 are comparable, agreement between the 
proposed theory (6) and the existing experiment results is very good. Also, 
for the critical region of Kz = 0, Eq. (7) is in good agreement with the Monte 
Carlo data ~v (data points A). This shows that our theory based upon the 
effective-medium theory provides a surprisingly accurate approximation to 
the quantitative description of the bulk conductivity of a random resistor 
network for all concentrations. 

4. C O M P A R I S O N  W I T H  EXPERIMENT 

When the thermal conductivities of the first and second phases and their 
respective volume fractions are known, we can expect to predict the effective 
thermal conductivity of random mixtures from them. Let p stand for the 
fraction of the total volume occupied by the first-phase material and let/s 
and K2 be the thermal conductivities of first and second phases, respectively. 
The effective thermal conductivity K can be predicted according to Eq. (6) 
from/s163 and p. 

Figures 5 and 6 give comparisons for glass particle-silicon rubber and 
glass fiber-plastic systems. Similar comparisons are made in Figs. 7 and 8 
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Fig. 5. Comparison of the experimental effective thermal conductivity with the theory 
in Section 3. The experimental values were measured by Hayashi e t  al.  ~18~ at 25~ 
(a) Effective thermal conductivity of mixtures composed of glass spheres and silicon 
rubber versus volume fraction of glass spheres. (b) Effective thermal conductivity of 
mixtures composed of irregular glass particles and silicon rubber versus volume fraction 
of glass particles. 

for systems saturated with air: porous sandstone and fire brick. Three of  
the four cases give excellent agreement. Only the air-saturated fire brick 
system really fails to fit the theory. The poor agreement may come from the 
fact that the experimentally prepared mixtures do not  represent a random 
system. 

The results shown in Figs. 5-8 are sufficient to show the excellent agree- 
ment o f  the theory with experimental data. This shows that these materials 

0,8 

0.5 

0,2 

- - E q u a t i o n  (6) 
o Experimental 

0 

I i I I [ I l I I 

0.5 1,0 

Volume fraction of glass fiber 

Fig. 6. Effective thermal conductivity of 
mixtures composed of glass fiber and plastic 
versus volume fraction of glass fiber. The 
experimental values are quoted from 
Holliday.C TM 
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Fig. 7. Effective thermal conductivity of air- 
saturated porous sandstone versus porosity. 
The experimental values were measured by 
Sugawara and Yoshizawa ~2~ at 0 and 100~ 

1.6 

U 

0 .4  

100~C 

0.2 0.4 0.6 0.8 1.0 

Porosity 

Fig. 8. Effective thermal conductivity of air- 
saturated fire brick versus porosity. The 
experimental points fail to fit the theory. 
This may come from the fact that  the ex- 
perimental measurements themselves show 
poor  reproducibility. The experimental 
values were measured by Sugawara and 
Yoshizawa ~21~ at 50~ 

0.8 

~ O.4 

0 

0 

- E q u a t i o n  (6) 
Experimental values 

0.5 1.0 

Porosity 

can be regarded as random systems. Thus, the phase geometry as well as 
the phase conductivities are of considerable importance in determining the 
physical properties of disordered two-phase materials. Finally, the theory 
based upon the site percolation system can be widely applied in predicting 
other physical properties, such as electrical and mechanical properties of 
disordered materials. 
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